Vibrational dynamics and boson peak in a supercooled polydisperse liquid.
نویسندگان
چکیده
Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.
منابع مشابه
The Boson peak in supercooled water
We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line ...
متن کاملThe Boson peak and the phonons in glasses
Despite the presence of topological disorder, phonons seem to exist also in glasses at very high frequencies (THz) and they remarkably persist into the supercooled liquid. A universal feature of such a systems is the Boson peak, an excess of states over the standard Debye contribution at the vibrational density of states. Exploiting the euclidean random matrix theory of vibrations in amorphous ...
متن کاملComparing dynamic correlation lengths from an approximation to the four-point dynamic susceptibility and from the picosecond vibrational dynamics.
Recently an alternative approach to the determination of dynamic correlation lengths ξ for supercooled liquids, based on the properties of the slow (picosecond) vibrational dynamics, was carried out [Hong, Novikov, and Sokolov, Phys. Rev. E 83, 061508 (2011)]. Although these vibrational measurements are typically conducted well below the glass transition temperature, the liquid is frozen at T(g...
متن کاملPotential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses
We describe a combination of laboratory and simulation studies that give quantitative information on the energy landscape for glass-forming liquids. Both types of study focus on the idea of suddenly extracting the thermal energy, so that the system obtained for subsequent study has the structure, and hence potential energy, of a liquid at a much higher temperature than the normal glass temperat...
متن کاملFragility and Boson Peak formation in a Supercooled Liquid
We analyze results for the Boson Peak from the neutron time of flight spectroscopy data on Ge-As-Se, and Raman spectra data on m-TCP and OTP, using a recent mode coupling model that takes into account the coupling of density fluctuations with vibrational modes in presence of defects in the supercooled state. From the experimental results for different materials we observe that for more fragile ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2010